
1

I	hope	you	have	completed	Part	1	of	the	Experiment.		This	lecture	leads	you	to	Part	
2	of	the	experiment	and	hopefully	helps	you	with	your	progress	to	Part	2.		It	covers	
a	number	of	topics:

1. How	do	we	specify	clocked	(i.e.	sequential)	circuits	in	Verilog?
2. How	do	we	specify	a	flexible	counter?
3. How	to	specify	and	use	shift	registers?
4. How	to	specify	linear-feedback	shift	registers	as	a	pseudo	random	binary	

sequence	generator?
5. How	to	convert	binary	(or	hexadecimal)	numbers	to	binary	coded	decimal	(BCD)	

numbers?



Verilog	is	very	much	like	C.		However,	the	declaration	of	a,	b	and	sum in	the	module	
add32	specifies	the	data	width	(i.e.	number	of	bits	in	each	signal	a,	b or	sum).		This	
is	often	known	as	a	“vector” or	a	“bus”.		Here	the	data	width	is	32-bit,	and	it	is	
ranging	from	bit	31	down	to	bit	0	(e.g.	sum[31:0]).
You	can	refer	to	individual	bits	using	the	index	value.	For	example,	the	least-
significant	bit	(LSB)	of	sum	is	sum[0]	and	the	most-significant	bit	(MSB)	is	sum[31].		
sum[7:0]	refers	the	the	least-significant	byte	of	sum.
The	‘+’ operator	can	be	used	for	signals	of	any	width.		Here	a	32-bit	add	operation	is	
specified.		sum is	also	32-bit	in	width.		However,	if	a and	b are	32-bit	wide,	the	sum	
result	could	be	33-bit	(including	the	carry	out).		Therefore	this	operation	could	result	
in	a	wrong	answer	due	to	overflow into	the	carry	bit.	The	33th	bit	is	truncated.
The	second	example	module	add32_carry	shows	the	same	adder	but	with	carry	
input	and	carry	output.		Note	the	LHS	of	the	assign statement.		The	{cout,	sum}	is	a	
concatenation operator	– the	contents	inside	the	brackets	{	} are	concatenated	
together,	with	cout is	assigned	the	MSB	of	the	33th	bit	of	the	result	,	and	the	
remaining	bits	are	formed	by	sum[31:0].

2



There	are	three	different	types	of	Boolean	operators:	

Bitwise	operators	perform	what	you	would	expect	as	if	there	are	parallel	gates	used	
for	each	bit	of	the	operands.		Therefore	a&bmeans	that	each	bit	from	a and	b is	
passed	through	an	AND-gate.

Logical	operators	only	result	in	0	or	1	(i.e.	1-bit	result)		In	this	example	!a	(not	a)	
where	a	=	0101,	will	result	in	first,	a being	evaluated	as	a	logical	value	(i.e.	logical	‘1’
or	true).		Therefore	the	result	~a is	logical	0	(or	false).

Reduction	operators	is	applied	to	a	single	operand	(and	sometimes	known	as	unary	
operators).		It	performs	the	operation	one-bit	at	a	time	to	the	operand.	

3



The	consequence	of	this	is	an	unexpected	extra	latch	being	added	to	the	hardware.
In	order	to	cope	with	the	unspecified	condition	of	sel	=	2’b11,	the	output	of	the	
MUX	is	fed	to	be	latch.		
Noted	that	a	latch	is	level-triggered;	a	flipflop	is edge-triggered.	A	latch	has	the	
property	that	when	the	gate	input	G is	high,	Q	=	D	(i.e.	it	is	transparent:	input	goes	
straight	to	output).		If	G is	low,	the	latch	become	opaque,	meaning	that	it	retains	the	
previous	value.
The	green	shaded	latch		in	the	diagram	and	the	controlling	NAND	gate	are	the	
unintended	consequences	of	this	incompletely	specified	3-to-1	multiplexer.

4



There	are	two	solutions	to	avoid	the	unintended	latch	being	added.
Solution	1	is	to	put	outside	the	case statement	a	“default” value	for	out.		Here	1’bx	
(i.e.	‘x’)	means	undefined.		
Solution	2	is	better:	inside	the	case statement	block,	always	add	the	default line.		
This	will	catch	ALL	the	unspecified	cases	and	avoid	the	introduction	of	the	spurious	
unintended	latches.

Lesson:			always	include	a	default	assignment	in	any	case statement	to	capture	
unintended	incomplete	specification.

5



We	have	previously	seen	the	2-to-1	MUX	being	specified	as	combinational	circuit	in	
Verilog	using	the	always construct	with	the	sensitivity	list.
The	right	hand	diagram	shows	how	a	clocked	sequential circuit is	being	specified	
using	always block,	but	with	a	sensitivity	list	that	includes	the	keyword	posedge (or	
negedge).		Note	that	the	clocking	signal	clk is	an	arbitrary	name	– you	could	call	it	
“fred” or	anything	else!
The	sensitivity	list	NO	LONGER	contains	the	input	signals	a,	b or	sel.		Instead	the	
hardware	is	specified	to	be	sensitive	the	positive	edge	of	clk.	When	this	happens,	
the	output	changes	according	to	the	specification	inside	the	always block.		
Two	assignments	(“=“ and	“<=“)	are	shown	here.	I	will	explain	the	difference	
between	these	later.

6



Therefore	in	Verilog,	you	specify	flipflops	using	always block in	conjunction	with	the	
keyword	posedge or	negedge.
Here	is	a	specification	for	a	D-flipflop	with	synchronous	clear	which	is	low	active	(i.e.	
clear	the	FF	when	clearb is	low).
You	may	have	more	than	one	always block	in	a	module.	But	if	this	is	the	case,	
beware	that	the	two	always blocks	will	execute	in	parallel.	Therefore	they	must	
NOT	specify	the	same	output,	otherwise	a	race	condition	exists	and	the	result	is	
unpredictable.

7



In	Verilog	‘=‘ is	known	as	blocking	assignment.		They	are	executed	in	the	order	they	
appear	within	the	Verilog	simulation	environment.		So	the	first	‘=‘ assignment	blocks	
the	second	one.		This	is	very	much	like	what	happens	in	C	codes.		
In	the	top	left	example,	both	a and	b eventually	have	the	value	b.
In	the	top	right	example,	each	statement	is	evaluated	in	turn	and	assignment	is	
performed	immediately	at	the	end	of	the	statement.

Non-block	assignment	is	‘<=‘,	and	statements	with	this	assignments	are	executed	in	
parallel	(i.e.	order	do	not	matter).
In	the	bottom	left	example,	a and	b are	swapped over	because	you	can	view	that	
the	two	assignments	happen	at	the	same	time.
In	the	bottom	right	example,	three	evaluations	are	made,	and	the	assignment	to	x,	y	
and	z	happens	at	the	same	time	on	exiting	from	the	always block.

8



Understanding	the	difference	between	‘=‘ and	‘<=‘ is	important.		Suppose	we	want	
to	specify	a	three-stage	shift	register	(i.e.	three	D-FF	in	series	as	shown	in	the	
schematic).		
Here	are	two	possible	specification.		Which	one	do	you	think	will	create	the	correct	
circuit	and	which	one	is	wrong?

9



The	left	hand	specification	is	wrong.		Since	the	three	assignments	are	performed	in	
sequence,	out	=	q2	=	q1	=	in.		Therefore	the	resultant	circuit	is	ONE	D-flipflop.
The	right	hand	side	is	correct.	q1,	q2 and	out are	updated	simultaneously	on	exit	
from	the	always block.		Therefore	their	“original” values	MUST	be	retained.		Hence	
this	will	result	in	three	D-flipflops	being	synthesised	(i.e.	created).	

In	general,	you	should	always	use	‘<=‘ inside	an	always block	to	specify	your	circuit.

10



Now	let	us	put	all	you	have	learned	together	in	specifying	(or	designing)	a	32-bit	ALU	
in	Verilog.		
There	are	five	operators	in	this	ALU.		We	assume	that	there	are	three	arithmetic	
blocks,	and	three	multiplexers	(two	2-to-1	MUX	and	one	3-to-1	MUX).

11



Each	hardware	block	is	defined	as	a	Verilog	module.	So	we	have	the	following	
modules:
mux32two – a	32-bit	multiplexer	that	has	TWO	inputs
mux32three – a	32-bit	multiplexer	that	has	THREE	inputs
mul16 – a	16-by-16	binary	multiplier	that	produces	a	32-bit	product
add32 – a	32-bit	binary	adder
sub32 – a	32-bit	binary	subtractor

12



Now	let	us	put	all	these	together.
Note	that	mxu32two is	being	used	twice	and	therefore	this	is	instantiated	two	
times	with	two	different	instance	names:	adder_mux and	sub_mux.
Connections between	modules	are	implicit	through	the	use	of	signal	names.		For	
example,	the	16-bit	inputs	to	the	multiplier	are	taken	from	the	lower	16-bits	of	a
and	b inputs	(i.e.	a[15:0] and	b[15:0]).

13



14

Counters	are	good	in	counting	events	(e.g.	clock	cycles).		We	can	also	use	counters	
to	provide	some	form	of	time	measurement.
Here	is	a	useful	component	which	I	can	a	clock	tick	circuit.		We	are	not	interested	in	
the	actual	count	value.		What	is	needed,	however,	is	that	the	circuit	generates	a	
single	clock	pulse	(i.e.	lasting	for	one	clock	period)	for	every	N+1	rising	edge	of	the	
clock	input	signal	clkin.		
We	also	add	an	enable	signal,	which	must	be	set	to	‘1’ in	order	to	enable	the	internal	
counting	circuit.
Shown	below	is	the	module	interface	for	this	circuit	in	Verilog.
Note	that	the	parameter	keyword	is	used	to	define	the	number	of	bits	of	the	
internal	counter	(or	the	count	value	N).		This	makes	the	module	easily	adaptable	to	
different	size	of	counter.



15

The	actual	Verilog	specification	for	this	module	is	shown	here.		
There	has	to	be	an	internal	counter	 count		 whose	output	is	NOT	visible	external	to	
this	module.		This	is	created		with	the	reg	[N_BIT-1:0]	count;	 statement.
The	output	tick has	to	be	declared	as	reg here	because	its	value	is	updated	inside	
the	always	block.
Also	note	that	instead	of	adding	‘1’ on	each	positive	edge	of	the	clock,	this	design	
uses	a	down counter.		The	counter	counts	from	N	to	0	(hence	N+1	clock	cycles).	
When	that	happens,	it	is	reset	to	N	and	the	tick	output	is	high	for	the	next	clock	
cycle.



16

Using	this	style	of	designing	a	clock	tick	circuit	allows	us	to	easily	connect	multiple	
counters	in	series	as	shown	here.
The	clktick	module	is	producing	a	pulse	on	the	tick output	every	50,000	cycles	of	the	
50MHz	clock.		Therefore	tick	 goes	high	for	20	microsecond	once	every	1	msec	(or	
1KHz).		
The	clktickmodule	is	sometimes	called	a	prescaler	 circuit.		It	prescale	the	input	
clock	signal	(50MHz)	in	order	for	the	second	counter	to	count	at	a	lower	frequency	
(i.e.	1KHz).
The	second	counter	is	now	counting	the	number	of	millisecond	that	has	been	
elapsed	since	the	last	time	reset	1R	goes	high.
The	design	of	this	circuit	is	left	as	a	tutorial	problem	for	you	to	do.



17

Here	is	yet	another	useful	form	of	a	counter.		I	call	this	a	clock	divider.		Unlike	the	
clktickmodule,	which	produces	a	one	cycle	tick	signal	every	N+1	cycle	of	the	clock,	
this	produces	a	symmetric	clock	output	clkout at	a	frequency	that	is	2*(K+1)	lower	
than	the	input	clock	frequency.		Shown	here	is	the	module	interface	in	Verilog.		
Again	we	have	used	the	parameter statement	to	make	this	design	ease	of	
modification	for	different	internal	counter	size.



18

The	Verilog	specification	is	similar	to	that	for	clktick.		This	also	has	an	internal	
counter	that	counts	from	K	to	0,	then	the	output	clkout is	toggled	whenever	the	
count	value	reaches	0.



19

To	specify	a	shift	register	in	Verilog,	use	the	code	shown	here	(in	blue	box).		We	use	
<=	assignment	to	make	sure	that	sreg[4:1]	are	updated	only	at	the	end	of	the	always	
block.
On	the	right	is	a	short-hand	version	of	the	four	assignment	statements:

sreg	<=	{sreg[3:1],	data_in}

This	way	of	specifying	the	input	to	the	assignment	is	powerful.		We	use	the	
concatenation	operation	{	….	}	to	make	up	four	bits	from	sreg[3:0]	and	data_in (with	
data_in being	the	LSB)	and	assign	it	to	sreg[4:1].	



20

We	can	also	make	a	shift	register	count	in	binary,	but	in	an	interesting	sequence.
Consider	the	above	circuit	with	an	initial	state	of	the	shift	register	set	to	4’b0001.
The	sequence	that	this	circuit	goes	through	is	shown	in	the	table	here.	It	is	NOT	
counting	binary.		Instead	it	is	counting	in	a	sequence	that	is	sort	of	random.		This	is	
often	called	a	pseudo	random	binary	sequence	(or	counter).
The	shift	register	connect	this	way	is	also	known	as	a	“Linear	Feedback	Shift	
Register” or	LFSR.		There	is	a	whole	area	of	mathematics	devoted	to	this	type	of	
computation,	known	as	“finite	fields” which	we	will	not	consider	on	this	course.
The	circuit	shown	below	is	effective	implementing	a	sequence	defined	by	a	
polynomial	shown:	1	+	X3 +	X4.		The	term	“1” specifies	the	input	to	the	left-most	D-
FF.		This	signal	is	derived	as	an	XOR	function	(which	is	the	finite	field	‘+’)	of	two	
signals	“tapped” from	stage	3	(i.e.	X3)	and	stage	4	(i.e.	X4)	of	the	shift	register.

For	a	m	stage	LFSR,	where	
m	is	an	integer,	one	could	
always	find	a	polynomial	
(i.e.	tap	configuration)	
that	will	provide	maximal	
length.		This	means	that	
the	sequence	will	only	
repeat	after	2m-1	cycles.		
Such	a	polynomial	is	
known	as	a	“primitive	
polynomial”.
The	table	here	shows	some	of	the	popular	primitive	polynomials	for	different	value	of	m.
Since	the	output	of	such	a	counter	is	peudorandom,	it	is	a	commonly	used	circuit	to	produce	
random	binary	sequence	for	different	applications.



21

Here	is	the	Verilog	specification	for	a	4-bit	LFSR.		



We	now	take	another	example	of	a	relative	complex	combinational	circuit,	and	see	
how	we	can	specify	our	design	in	Verilog.
The	goal	is	to	design	a	circuit	that	converts	an	8-bit	binary	number	into	three	x	4-bit	
binary	coded	decimal	values	(i.e.	12	bit).		
There	is	a	well-known	algorithm	called	“shift-and-add-3” algorithm	to	do	this	
conversion.			For	example,	if	we	take	8-bit	hexadecimal	number	8’hff	(i.e.	all	1’s),	it	
has	two	hex	digits.		Once	converted	to	binary	coded	decimal	(BCD)	it	becomes	255	
(3	BCD	digits).

22



23

Before	we	examine	this	algorithm	in	detail,	let	us	consider	the	arithmetic	operation	
of	shifting	left	by	one	bit.		This	is	the	same	as	a		x	2	operation.		
If	we	do	it	8	times,	then	we	have	multiplied	the	original	number	by	256	or	28.
Now	if	you	ignore	the	bottom	8-bit	through	a	truncation	process,	you	effectively	
divide	the	number	by	256.		In	other	words,	we	get	back	to	the	original	number	in	
binary	(or	in	hexadecimal).



24

Our	conversion	algorithms	works	by	shift	the	number	left	8	times,	but	each	time	
make	an	adjustment	(or	correction)	if	it	is	NOT	a	valid	BCD	digit.
Let	us	consider	this	example.		We	can	shift	the	number	four	time	left,	and	it	will	give	
a	valid	BCD	digit	of	7.
However,	if	we	shift	left	again,	then	7	becomes	hex	F,	which	is	NOT	valid.		Therefore	
the	algorithm	demands	that	3	is	added	to	7	(7	is	larger	or	equal	to	5)	before	we	do	
the	shift.		



25

The	rationale	of	this	algorithm	is	the	following.	If	the	number	is	5	or	larger,	after	
shift	left,	we	will	get	10	or	larger,	which	cannot	fit	into	a	BCD	digit.		Therefore	if	the	
number	5	(or	larger)	we	add	3	to	it	(after	shifting	is	adding	6),	which	measure	we	
carry	forward	a	1	to	the	next	BCD	digit.



26

To	recap:		the	basic	idea	is	to	shift	the	binary	number	left,	one	bit	at	a	time,	
into	locations	reserved	for	the	BCD	results.		Let	us	take	the	example	of	the	
binary	number	8’h7C.		This	is	being	shifted	into	a	12-bit/3	digital	BCD	result	
as	shown	above.		
After	8	shift	operations,	the	three	BCD	digits	contain	respectively:	hundredth	
digit	=	4’b0001,	tens	digit	=	4’b0010	and	ones	digit	=	4’b0100,	thus	
representing	the	BCD	value	of	124.
The	key	idea	behind	the	algorithm	can	be	understood	as	follow	(see	the	
diagram	in	the	slide):
1.Each	time	the	number	is	shifted	left,	it	is	multiplied	by	2	as	it	is	shifted	to	
the	BCD	locations;
2.The	values	in	the	BCD	digits	are	the	same	as	as	binary	if	its	value	is	9	or	
lower.		However	if	it	is	10	or	above	it	is	not	correct	because	for	BCD,	this	
should	carry	over	to	the	next	digit.	A	correction	must	be	made	by	adding	6	to	
this	digit	value.
3.The	easiest	way	to	do	this	is	to	detect	if	the	value	in	the	BCD	digit	locations	
are	5	or	above	BEFORE	the	shift	(i.e.	X2).		If	it	is	≥5,	then	add	3	to	the	value	
(i.e.	adjust	by	+6	after	the	shift).	



27

In	order	to	understand	how	to	we	may	implement	this	converter	in	hardware,	
you	have	to	understand	that	shifting	in	hardware	is	easy.		You	just	need	to	
connect	signals	with	one	bit	shift	to	the	left.	It	DOES	NOT	need	any	gates,	just	
wires!

Now	we	also	need	to	do	the	adjust	module,	which	simply	performs	the	
operation:	

if	(in	>=	5)		out	=	in	+	3				else		out	=	in

The	easiest	way	to	implement	such	a	module	is	to	use	a	case	statement.		This	
is	set	as	a	tutorial	problem	in	Problem	Sheet	1.	



28

The	entire	full	array	is	shown	here.		The	shade	module	is	the	adjust	module		(which	
we	call:	add3_ge5).
As	I	said	in	the	last	slide,	the	easiest	way	to	implement	(specify)	add3_ge5 is	using	a	
case	statement.
The	BLUE	signal	path	traces	what	happens	to	the	least	significant	bit	of	the	original	
number.



29

The	full	array	is	more	complicated	than	need	be.		If	we	propagate	the	‘0’s	forward	in	
the	array	of	gates,	you	will	find	those	marked	with	‘X’ will	always	have	its	input	less	
than	5.		In	which,	output	=	input	in	these	modules.		THIS	IS	JUST	A	SET	OF	FOUR	
WIRES.		
The	only	remaining	add3_ge5modules	are	those	shaped	in	orange.



30

After	simplification,	here	are	ALL	the	remaining	add3_ge5	modules	for	the	8-bit	
binary	to	BCD	conversion	(bin2bcd8).		I	have	labeled	the	input	ports	to	 add3_ge3	
wn[3:0] and	the	output	parts	an[3:0] where	n	is	1	to	7.



31

Assuming	that	we	have	designed	a	module	“add3_ge5” to	perform	the	adjustment	
as	required,	the	converter	can	be	implemented	in	Verilog	by	simply	“WIRING	UP”
the	various	modules	together.

The	interconnections	are	specified	in	the	wire	statements.
The	next	block	is	instantiating	7	add3_ge5modules.
The	next	block	of	code	is	to	wire	the	modules	together.
Finally	the	last	statements	are	to	connect	up	the	signals	from	the	modules	to	the	
output	ports.


